Article 2421

Title of the article

Recovering the permittivity of an inhomogeneous dielectric body in a semi-infinite rectangular waveguide 

Authors

Roman O. Evstigneev, Candidate of engineering sciences, part-programming engineer, “Kharman” LLC (8 Kovalikhinskaya street, Nizhni Novgorod, Russia), roman_cezar@mail.ru 
Marina A. Moskaleva, Candidate of physical and mathematical sciences, associate professor of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), m.a.moskaleva1@gmail.com 

Index UDK

517.3

DOI

10.21685/2072-3040-2021-4-2 

Abstract

Background. The purpose of this work is to restore the permittivity of an inhomogeneous dielectric body located in a semi-infinite rectangular waveguide. The proposed method can be effectively applied to solving a number of problems in applied electrodynamics, such as flaw detection and determination of the metamaterials’ permittivity. Material and methods: To solve the studying problem, we used the method of volumetric singular integral equations. Results: A numerical method for reconstructing the dielectric constant of an inhomogeneous dielectric body located in a semi-infinite rectangular waveguide has been developed and substantiated. Numerical results are presented. Conclusions: The proposed method can be effectively used for the design of nanocomposites and nanostructures, as well as for their study by the method of nondestructive testing.

Key words

boundary value problem, inverse diffraction problem, integro-differential equation, Green's tensor 

 Download PDF
References

1. Baena J., Marques R., Medina F., Jelinek L. Near-perfect tunneling and amplification of evanescent electromagnetic waves in a wave guide filled by a metamaterial: Theory and experiments. Phys. Rev. B. 2005;72:075–116.
2. Eves E., Murphy K., Yakovlev V. Reconstruction of complex permittivity with neuralnetwork- controlled FDTD modeling. Power Electromag. Energy. 2007;4(41):22–34.
3. Tao Pan, Guo-Ding Xu, Tao-Cheng Zang, Lei Gao. Study of a slab waveguide loaded with dispersive anisotropic. Applied Physics A. 2009;95:367–372.
4. Usanov D., Skripal A., Romanov A. Complex permettivity of composites based on dielectric matrices with carbon nanotrubes. Technical Physics. 2011;56(1):102–106.
5. Beilina L., Klibanov M. Approximate Global Convergence and Adaptive for Coefficient Inverse Problems. New York: Springer, 2012:408.
6. Romanov V.G. Inverse Problems of Mathematical Physics. Utrecht: VNU, 1986:239.
7. Smirnov Yu.G. Matematicheskie metody issledovaniya zadach elektrodinamiki = Mathematical methods for the study of electrodynamics problems. Penza: Inf.-izd. tsentr PGU, 2009:268. (In Russ.)
8. Il'inskiy A.S., Smirnov Yu.G. Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh = Diffraction of electromagnetic waves on conducting thin screens. Moscow: IPRZhR, 1996:176. (In Russ.)
9. Medvedik M.Yu., Smirnov Yu.G. Obratnye zadachi vosstanovleniya dielektricheskoy pronitsaemosti neodnorodnogo tela v volnovode = Inverse problems of restoring the dielectric permittivity of an inhomogeneous body in a waveguide. Penza: Izd-vo PenzGU, 2014:76. (In Russ.)

 

Дата создания: 19.01.2022 11:13
Дата обновления: 19.01.2022 13:41